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ABSTRACT

Multilevel military communication security can be implemented with the notion

of masterkeys. Naval message traffic is transmitted with restricted character set and

optionally files are compressed. Both character translation and data compression can be

used as add-on data encryption. A masterkey is constructed from a set of service keys

from which masterkey is allowed to access. This thesis presents the principles of

multilevel security with restricted character translation, data compression, and masterkey

implementation.
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I. INTRODUCTION

Multilevel security is a familiar scheme of classification in the national security

hierarchy. It may partition subjects in levels of clearance and divide objects into levels

of classification [Ref. 1]. This thesis reports one implementation that supports multilevel

security with a Master Key [Ref. 2] and is suitable for naval message traffic by data

compression and character translation. Data compression reduces original data package

size for better storage and transmission capacity, while character translation converts

each byte of an input file to a restricted character set since naval message traffic uses a

restricted character set.

A shore-based system includes a large database which consists of relational tables of

ASCII data in a commercial RDBMS (Relational Database Management System) as well

as associated ASCII text and binary (graphic) files. Packages of data are prepared from

the database for subsequent delivery to remote systems via floppy disks, an electronic

network, or via standard naval message traffic. Each prepared data package consists of

a combination of ASCII and binary files grouped together in the standard hierarchical file

storage structure of the host system. After either physical or electronic delivery of a data

package, it resides within the file storage of the remote system.

The processes of data compression is followed by data encryption prior to passing

the processed file on to the character translation process. The entire scenario is then

I



HOST \ / REMOTE
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Figure 1. The scenario of data package transmission on Naval message traffic.

repeated in the reverse direction at the remote site as shown in Figure 1. A data

compression algorithm is investigated based on its conflicting efficiencies of CPU time

and compression ratio. When urgency does not dictate action, the compression ratio is

more important than execution time. Data encryption is an optional requirement that

allows different encryption schemes to be chosen. Without a hardware encryption chip

available to us, DES (Data Encryption Standard) [Ref. 3] has been implemented by

software that incorporates the Master Key routines. As an unclassified research, this

thesis uses the UNIX crypto routine for illustration.

Though designed for different purpose, all three methods used in this research

2



contribute to data security: data compression, data encryption, and character translation.

When all methods are employed, the overall data security is greatly enhanced since the

probability of decoding by adversaries is the product of probabilities in breaking each

process individually.

In Chapter II, data compression techniques are briefly overviewed. Chapter III

discusses the incorporation of Master Keys for supporting multilevel security systems and

data encryption. Chapter IV introduces the algorithm for character translation. The

concluding remarks are given in Chapter V.
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II. A CASCADING DATA COMIPRESSION TECHNIQUE

Regardless of the compression algorithm used [Ref. 4, 5, 6, 7, 8], a compressed file

can actually provide the first level of encryption since the compressed file consists of

random bit patterns and mostly non-printable characters. Because all compression

algorithms do not have byte-for-byte correspondence between the source file and the

compressed file, each byte of the compressed file can not be reversed back to original

bit pattern unless the compression algorithm is known.

The data compression software we use for implementing multilevel security access

control and restricted character translation is the "ZIP" program written by Richard B.

Wales et.al [Ref. 9]. The program includes three compression routines that may be

chosen by the user. Each routine implements a different compression technique. In this

chapter we overview the "Implode" routine. Implode is the best of the three algorithms

and is known to be one of the fastest and most powerful schemes for data compression

in terms of execution speed and compression ratio. The compression algorithm of

"Implode" is actually a combination of two distinct algorithms. The first algorithm is

OPM/L (Original Pointer Macro restricted to Left pointers) compression scheme which

compresses repeated byte sequences using a sliding dictionary (window). The second

algorithm is Shannon-Fano coding which uses multiple variable-length binary encoding

of various parts of the OPM/L output.

4



A. THE OPM/L COMPRESSION ALGORITHM DEVELOPMENT

An OPM/L data compression scheme called LZ77 was first suggested by Ziv and

Lempgl [Ref. 6]. A slightly modified version of this scheme which improves the

compression ratios for a wide range of texts, developed by Storer and Szymanski, is

called LZSS [Ref. 10] and has fast decoding and requires comparatively little memory

for coding and decoding.

An OPM/L scheme replaces a substring in a text with a pointer to a previous (left)

occurrence of the substring in the text. The pointer represents the position and size of the

sub-string in the original text. These restrictions make fast single-pass decoding

straightforward. The LZ77 scheme restricts the reach of the pointer to approximately the

previous N characters, effectively creating a "window" of N characters which are used

as a sliding dictionary. Pointers are chosen using a greedy (seeking for longest match)

algorithm which permits single-pass encoding. Therefore a LZ77 encoder is

parameterized by N, the size of the "window", and F, the maximum length of a substring

that may be replaced by a pointer. Encoding of the input string proceeds from left to

right. At each step of the encoding a section of the input text is available in a window

of N characters. Of these, the first N - F characters have already been encoded and the

last F characters are the "lookahead buffer". For example, if the string S =

abcabcbacbababcabc ..... is being encoded with the parameters N = 11, F = 4 and

character 12 is to be encoded next, the window is as shown in Figure 2.

Initially the first N - F characters of the window are (arbitrarily) blanks, and the

first F characters of the text are loaded into the lookahead buffer. The already encoded

5



5 6 7 8 9 10 11 12 13 14 15

Lb Ic Ib a Ic Ib ca b I a b c

already encoded lookahead buffer

Figure 2. LZ77 encoding string S with N = 11, F = 4.

part of the window is searched to find the longest match for the lookahead buffer, but

obviously it can not be the lookahead buffer itself. In the example, the longest match for

the "babc" is "bab", which starts at character 10. The longest match is then encoded into

a triple < i, j, a>, where i is the offset of the longest match from the lookahead buffer,

j is the length of the match, and a is the first character which did not match the substring

in the window. In this example, the output triple would be <2, 3, 'c'>. The window

is then shifted right j + 1 characters, ready for another coding step. Decoding is very

simple and fast. The decoder maintains a window in the same way as the encoder, but

instead of searching for a match in the window it uses the triple given by the encoder.

The main disadvantage of LZ77 is that, a straightforward implementation can

require up to (N - F) F characters comparisons, typically on the order of several

thousands. The performance of different compression schemes with the parameters of

speed and memory is listed in Table I.

An improved technique for reducing the time for compression was introduced by

T.CBell [Ref. 4] since time is the only point when LZ77 or LZSS techniques fall short

of other algorithms that are shown in Table I. The algorithm developed by Bell is the

6



Table 1. Performance of different compression schemes.

SPEED (bytes MEMORY
COMPRESSION per second) (K bytes)

SCHEME Encod Decode Encode Decode

LZSS
N=8192 18 13,600 8 8

LZSS
N=2048 52 10,900 2 2

LZ77

N=8192 24 15,200 8 8

LZ78 5300 10,060 350 135

LZW 5700 8,400 48 12

ARITHMETIC - - 32 to 1400 32 to 1400

ADAPT. HUFF. 990 1,300 8 8

"Binary Tree Algorithm" that searches for the longest match for a string. Consider the

same string S at page 5 with the same parameters N 11 and F = 4, and coding is up

to character 12 as shown in Figure 3.

5 6 7 8 9 10 0 1 2 3 4

b c b af c Jb a b a b c

I lookahead buffer

Figure 3. Encoding window of Binary Tree Algorithm.

The lookahead buffer is defined as L = x, = babc and x5 = bcba, x6 = cbac, x7

= bacb, x, = acba, x9 = cbab, x1o = baba, x0 = abab. By inspection, the longest match

7



is x1o0 with vector (1, x) = (10, 3) where 10 is the position of the match string start and

3 is the characters that match the lookahead buffer.

The binary search algorithm start with sorting the x,, x6 ,..., x. with Literal order.

So we have:

Xo 8 0x x X7 x5 x X6

abab acba baba babc bacb bcba cbab cbac

The longest match for L should be found at the beginning of x, 0 or X7 . This

happened because these two strings are Literal adjacent to the lookahead buffer L and are

the two candidates for the longest match.

The basic construction of the tree is that for any node xi all nodes in its left subtree

are Literal less than x, and all nodes in its right subtree are Literal greater than xi.

Therefore the tree is constructed starting with x5, x6, x7, ... , x,,, x0, L and then x,,, and

x7 appear on the path to L as shown in Figure 4, where the algorithm for encoding and

binary tree searching will be discussed in Section II. C.

B. SHANNON-FANO CODING ALGORITHM

The Shannon-Fano technique [Ref. 15] has as an advantage its simplicity. The code

is constructed as follows. The source messages a, and their probabilities p(a) are listed

in order of nonincreasing probability. This list is then divided in such a way as to form

two groups of as nearly equal total probabilities as possible. Each message in the first

group receives 0 as the first digit of its codeword; the messages in the second half have

8



x - bcba

X 7M-bab x6-ca

g x a a x, -cbab

I xo -6abb Ei o- baba

[L - baber

Figure 4. Lexicographically tree structure.

codewords beginning with 1. Each of these groups is then divided according to the same

criterion, and additional code digits are appended. The process is continued until each

subset contains only one message.

Figure 5 shows the application of Shannon-Fano algorithm to a specific probability

distribution. The length of each codeword is equal to -log 2 p(a). This is true as long as

it is possible to divide the list into subgroups of exactly equal probability. When this is

not possible, some codewords may be of length -log 2 p(ai) + 1. The Shannon-Fano

algorithm yields an average codeword length S that satisfies H _< S _< H + 1, where H

is the entropy of the source. The Shannon-Fano code for the ensemble "aa bbb cccc

ddddd eeeeee fffffff gggggggg" is shown in Figure 6.

9



CHARACTER PROBABILITY ENCODED

a, 1/2 0 , v I

a2 1/4 10 st p 2

a3 1/8 110 stp3

a4 1/16 1110 step4

a5 1/32 11110 step5

a6 1/32 11111

Figure 5. A Shannon-Fano code.

CHARACTER PROBABILITY ENCODED

g 8/40 00 stp2

f 7/40 010 step 3

e 6/40 011 step I

d 5/40 100 stcp 5

space 5/40 101 stp 4

c 4/40 110 strp6

b 3/40 1110 step7

a 2/40 i111

Figure 6. A Shannon-Fano code example.

C. SOFTWARE IMPLEMENTATION

The cascading of OPM/L and Shannon-Fano scheme in the Imploding algorithm can

use a 4K (N = 4096) or 8K (N = 8192) sliding dictionary size. The dictionary size used

10



can be determined by bit 1 in the general purpose flag word of "Local file header" [Ref.

11].

The Shannon-Fano trees are stored at the beginning of the compressed package.

The number of trees stored is defined by bit 2 in the general purpose flag word. If 3

trees were stored, the first tree represents the encoding of the literal characters, the

second tree represents the encoding of the Length information, the third represents the

encoding of the distance information. When 2 Shannon-Fano trees are stored, the Length

tree is stored first, followed by the distance tree.

The Literal Shannon-Fano tree, if presented, is used to represent the entire ASCII

character set, and contains 256 values. This tree is used to compress any data not

compressed by the sliding dictionary algorithm. When this tree is presented, the

Minimum Match Length (MML) for the sliding dictionary is 3. If this tree is not

presented, the MML is 2. The Length Shannon-Fano tree is used to compress the Length

part of the (length, distance) pairs from the sliding dictionary output. The Length tree

contains 64 values, ranging from the MML to MML + 63. The distance Shannon-Fano

tree is used to compress the Distance part of the (length, distance) pairs from the sliding

dictionary output. The Distance tree contains 64 values, ranging from 0 to 63,

representing the upper 6 bits of the distance value. The distance values themselves will

be between 0 and the sliding dictionary size, either 4K or 8K.

The Shannon-Fano trees themselves are stored in a compressed format. It can be

constructed from the bit lengths using the following algorithm

11



1) Sort tne Bit Lengths in ascending order, while retaining the order of the original

lengths stored in the file.

2) Generate the Shannon-Fano trees use the routine in Figure 7.

Code <- 0
CodeIncrement <- 0
LastBitLength <- 0
i <- number of Shannon-Fano codes - 1 (either 255 or 63)

loop while i > 0
Code = Code + CodeIncrement
if BitLength(i) <> LastBitLength then

LastBitLength = BitLength(i)
CodeIncrement = 1 Shifted left (16-LastBitLength)

ShannonCode(i) = Code
i <- i - 1

end loop

Figure 7. Algorithm for generating Shannon-Fano trees.

3) Reverse the order of all the bits in the ShannonCodeo vector, so that the most

significant bit becomes the least significant bit. For example, the value Ox 1234

(hex) would become Ox2C48 (hex).

4) Restore the order of Shannon-Fano codes as originally stored within the file.

Let's give an example which will show the encoding of a Shannon-Fano tree of size

of 8. Notice that the actual Shannon-Fano trees used for Imploding are either 64 or 256

entries in size.

For example give : 0x02, 0x42, OxOl, Ox13.

The first byte indicates 3 values in this table. Decoding the bytes:

12



0x42 = 5 codes of 3 bits long

x01 = 1 code of 2 bits long

0x13 = 2 codes of 4 bits long

This would generate the original bit length array of:

(3, 3, 3, 3, 3, 2, 4, 4)

There are 8 codes in this table for the values 0 through 7. Using the algorithm to obtain

the Shannon-Fano codes step by step will produce the result as in Figure 8.

Reversed Order Original
Val Sorted Constructed Code Value Restored Length

0: 2 1100000000000000 11 101 3
1: 3 1010000000000000 101 001 3
2: 3 1000000000000000 001 110 3
3: 3 0110000000000000 110 010 3
4: 3 0100000000000000 010 100 3
5: 3 0010000000000000 100 11 2
6: 4 0001000000000000 1000 1000 4
7: 4 0000000000000000 0000 0000 4

Figure 8. Decoding steps of Shannon-Fano scheme.

The values in the 'Val', 'Order Restored' and 'Original Length' columns now

represent the Shannon-Fano encoding tree that can be used for decoding the Shannon-

Fano encoded data. The compressed data stream begins immediately after the compressed

Shannon-Fano data. The compressed data stream can be interpreted by the algorithm

shown in Figure 9.

Since pass two (Shannon-Fano tree) depends on a statistical analysis of the entire

13



loop until done
read 1 bit from input stream.

if this bit is non-zero then (encoded data is
literal data)

if Literal Shannon-Fano tree is present
read and decode character using Literal
Shannon-Fano tree.

otherwise
read 8 bits from input stream.

copy character to the output stream.
otherwise (encoded data is sliding dictionary match)

if 8K dictionary size
read 7 bits for offset Distance (lower 7 bits

of offset).
otherwise

read 6 bits for offset Distance (lower 6 bits
of offset).

using the Distance Shannon-Fano tree, read and
decode the upper 6 bits of the Distance value.

using the Length Shannon-Fano tree, read and
decode the Length value.

Length <- Length + Minimum Match Length

if Length = 63 + Minimum Match Length
read 8 bits from the input stream,
add this value to Length.

move backwards Distance+l bytes in the output
stream, and copy Length characters from this
position to the output stream. (if this position
is before the start of the output stream, then
assume that all the data before the start of the
output stream is filled with zeros).

end loop

Figure 9. The OPM/L decoding algofithm.

output of pass one (OPM/L compression), the output of pass one is saved in a temporary

file and re-read for pass two. Imploding is thus a two-pass algorithm.

Table II is a result of comparing different compression algorithms with different

14



Table II. Comparison of compression ratios.

COMPRESSION ALGORITHM
FILE SIZE DYNAM. LZSS ADPTIVE CASCADING

LZW HUFFMAN OPM/L

TXT 24969 46.6% 47.1% 58.9% 37.5%

WPR 25195 48.5% 49.6% 50.6% 40.4%

CPG 17325 39.5% 32.9% 58.6% 26.1%

EXE 24630 68.3% 55.9% 77.0% 53.6%

PAK 76644 55.2% 52.5% 70.1% 39.3%

TXT : Text file. WPR : Wordperfect file.
CPG : C source file. EXE : Executing binary file.
PAK : Combination of 90% text and 10% image binary

file.

data type files in compression ratio (% of original file size). Clearly, the cascading of

OPM/L and Shannon-Fano scheme has a far better performance than others. The EXE

file exhibits a higher ratio because of the poor compression performance for binary files

[Ref. 12], Run-length encoding may take advantage of long string of binary images

which is not the main subject of this research. A complete comparison of data

compression efficiency in terms of compression ratio and execution time can be found

in .ung [Ref. 12].
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III. DATA ENCRYPTION WITH MASTER KEY IMPLEMENTATION

When a data package is transmitted to remote systems, compressed or not, if

encryption is requested by user, the access control of the encrypted package is then of

principal concern. When several parties require shared access to a secure data package,

it is convenient to partition the packages into several classes (multilevel) and encrypt each

class individually. A key management problem can be avoided by providing a Master

Key to permit access to the required classes. In this chapter, the Master Key scheme is

introduced and implemented to support multilevel security.

A. THE MASTER KEY SCHEME

1. Master Key Systems

The brief overview of Master Keys in this section is based on [Ref. 2] which

is an improvement to [Ref. 13]. A Master Key is a compact representation for a subset

of the service keys. In the following discussion, the '_<' indicates a partial order

subordinating relation. Each S, is assigned a service key SK. If S, < S, then service (an

object) S is subordinated to Si and access to Si guarantees access to Si.

Each service is assigned a small prime p, but no primes are assigned to the

Central Authority (CA) or Master Keys user. Let

N
T=flpn

n-1

16



For each service a number ui is defined as

U.= [I P.

and the service key is defined as

T

SK I = KOU1

Ko is a random key number chosen by the central authority. The Master Keys can be

made by the following mechanism. First, v, is computed as

":1=1I P.2
SK a XBj

where the set

{SK1 s b1KJ

consists of all the keys for services accessible with Master Key MK,. The Master Key

is defined as

ViHK = K"O

The computation of a service key from a Master Key is then

17



T

SIC1 = Ko U = (Kvj) ul = MVKj u i SKj S (1)

Note that in this chapter, the arithmetic is performed in (mod M) for some

integer M. Values are operated in the ring of integers (0, M - 1) where M is defined by

M = P1 p 2

for some large primes p, and P2 similar to the RSA algorithm [Ref. 141.

2. Flexibility of Master Key algorithm

Computation of a service key is feasible if and only if SK, _< MKj. If SK. <

MK,, then (by definition) all primes in u, must be included in vj, thus, ui divides vj.

(MK)j/"u is easily computed as in equation (1) since v/u, results in an integer.

a. Prohibition of non-MasterKey intrusion

When SK, , MKj, the access is denied as follows. Let

-- I (2)
uj = KPi , ._ = [(MKx) p,] . (2

Where pi does not divide vj, and the pi' root of MK must be computed. But computing

the r'b roots mod M for r > I is believed to be as difficult as factoring M [Ref. 3]. So

when pi does not divide vi, MKviIPi cannot be computed if the factors of the modulus are

unknown. This prohibits the unauthorized access when M is large.

18



b. Prohibition of grouped intrusion

The Master Key is also secure against illicit cooperation wkhere a group

of people may have sufficient information to do things none of them are capable of

individually. A sufficient condition is that no group of Master Keys can be used to gain

access to additional services. That is, from a group of Master Keys we cannot create a

key MK, such that SKj < MK, if none of the keys in the group have access to service

Si. This has been proven in [Ref. 2] since p, is not a factor of vi in any Master Key of

the group.

c. Expansion capability

[Ref. 2] also proved that it is possible to add services to the system,

without affecting existing keys, provided that a new addition is not subordinate to any

existing service. Hence a new service added will introduce the equation to compute SK,

as

= (Kg)~'(3)

Where

1

T= T "p,-

UN. 1 = I P 2 "

19



and SKN+I is the new service added.

Although the keys are unchanged by the substitution of T' and Ku', but

this manner bring up the new problem that number of services to be added is constrained

by the relatively primes to M, for instance, if M = p, * p,, then the maximum number

of service key that can be expanded is 2. In addition, since the new prime PNII is not a

factor of vj for any of the existing keys, new Master Keys have to be redistributed by the

CA to accommodate the < relationships.

We notice that Tvalue (products of all primes) is the burden which makes

system expansion inflexible. T must be fixed or all key numbers have to change

accordingly since T/u,, or T/v, provides the power of SKi, M. In our experiment, we

introduce another method for Master Key system expansion. Numbers of individual

services are assigned in the beginning when a system was built according to future

expansion consideration. These services originally can be either < or doesn't < to any

service or Master Key, but primes are assigned to them as usual service key. Thus, T

value will not be affected when any of these services is assigned to be a new service key,

and the new service key can be inserted (or activated) in between two existed service

keys or under any Master Key as required, the only value has to be modified is the u

or/and related vj when insertion takes place.

B. EXAMPLE OF A MULTILEVEL SECURITY MODEL

To implement the concept of Master key scheme on compressed/encrypted data

package, we constructed a multilevel hierarchy of 70 services as illustrated in Figure 10.
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Each service can be treated as an encrypted data package. To access (decrypt) an

encrypted package Si from Sj or by MK, the subordinating relationship either S < S or

S <5 MK must be satisfied respectively.

In Figure 10 the !5 relationships among services are shown by covering over the

inferior one in vertical order. For example, the leftmost column shows that S08 < S09,

S07 < S08 ..etc. Therefore, a Master Key that can access a service Si can also access all

the services inferior to S,. Thus, if a Master key MK > SK, then this MK can access

SKi-1 , SKi_2. ... as well, provided that SK11 , SK. 2, ... are connected and been covered.

Consequently, this Master key is called MK,.

Additionally, there are eight other Master keys (MKJ, j = 0,1,...,7) shown as

shaded arrows in Figure 10. Each MKJ covers or is superior to services connected by a

line. For example, MKo, has a line going through S09, S18, S27, S36, S45, S54, S63 and

therefore SK09 < MKo, SK18 < MKO ...... , SK63 < MK,. Table A in Appendix B lists

the correspondi.ig prime number assignments for Figure 10. For instance, the prime

number for S o is 349.

1. Example of access control

As an instructive example, let's arbitrarily pick S 35 as an encrypted data

package to access. Figure 10 shows SK 35  MKo (SK35 
< SK 36 -< MKO), SK35  - MK 3,

S35 
< S36,...etc. Hence, there are 8 Master Keys that can access S3S:

MKQ, "L'K;, I~ MK , r 5 "Y11K7 KK, 8 1 (4)
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MK S

00- 10 20 -30 40 9 6

Figure 10. A multilevel services hierarchical model.

The number u35 is computed as

1 5 2 54 56

= p = 229 227 223 211 199 197 (5)

Two parameters are needed for key number computation :First, M = 2147483641L is

arbitraily chosen such that M is close to 23 and M >> (p0  P). This M can be

supported by a 32-bit unsigned long" integer in C. Next, a randomly picked K0 = 1992

is used. Now the service key for S35 is
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II Pn,,i

SK35 = mod(K0 "'  ) for i = 30, 31, 32, 33, 34, 35. (6)

= 1989952527L

Table B in Appendix B lists all the service keys. We now show how the

Master Key MK3 can access S35 by making SK35 from MK3. The value of v3 has to be

computed first.

39

V= (IPJ) P20 -= 179 181 .... ". 229 '281 (7)

Therefore,

(9

M 3 = 1992" for n, j, j 30, 31 ...... 39, 20. (8)

= 0002255128L

With MK3 one can derive SK35:

VI "P20 ' P 36 P "1 ..... P

MY. us = mod( (2255128) P3 " "P1...... )

=rod ((2255128)Z "JP.4 -'1oTho ")

= mod((2255128) 281 • 193 • 191 -181 .179)

= 1989952527L = SK 3 5
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In other words, MK3 can access service S35 .

2. Example of intrusive prevention

On the other hand, let's see whether MK7 (it is not in set (4)) can access S35.

Since

V7 = P41 " P5 0 * P51
(10)

= 173 167 • 113 • 109 = 355850447L

and

MK7 = rnod(1992-' ) for n * j, j = 40, 41, 50, 51.

= 1479772666L

To make the service key SK35 from MK7 one may try the following.

V7  PAO ALI "Pso *Pri

MK. ul- = mod( (1479772666) P'3 "'* ..... (P1)

Let

a = 0 p'3 " PS 2 *p A 3 * p

Equation (11) becomes
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___Pao ' 'P4 36 *" JP$i 1
K7U =mod( ((1479772666) ) .

Since P35 does not divide into v7, MK7 can not access S35 and computing the

p35
t root to factor P,5 out will be difficult; never even mention the modulus number

2147483641L. With same computation model, one can show that all Master Keys in set

(4) can access S35, but none of the others can. It is also shown that a Master Keys

constructed from a group of Master Keys which are not in set (4) access S35 either, since

P 35 (197) does not divide any v of them. This prevents the grouped intrusion.

C. SOFTWARE BIPLEMENTATION

Recall the scenario of the Naval message traffic described in Chapter I. If data

encryption is required, it has to be done after data compression and before the characters

set translation at the host system. In the software implementation (see Appendix A), user

may provide the password (key) for encryption after data compression (at host system)

or data recovery (at remote system). Given a correct key the program will encrypt or

decrypt the file; otherwise the program assumes no data encryption.

Command line options allows a user to modify an encrypted file without explicitly

decrypting it. But when using this option a user still has to provide the decryption key,

The whole procedure is as follows:

[recovery] - decryption -- modification -- encrypton -- [translation].

In this case, the password for encryption procedure is automatically derived from
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file header of the decryption process. In the next two sections, we will dscuss how

passwords are verified in the Master Key access control environment and how data

encryption is implemented. The C program listing can be found in Appendix A.

1. Master Key access control

Access control is divided into two steps: password conversion and key number

computation.

first 2 numbers = first byte (of password) convert to
ASCII;
third number = second byte - 49 (ASCII);
fourth number = third byte - 52 (ASCII);
fifth number = fourth byte - 55 (ASCII);
sixth and seventh number = fifth and sixth byte;
eighth number = seventh byte - 58 (ASCII);
ninth number = eighth byte - 61 (ASCII);
tenth number = ninth byte - 64 (ASCII);
key number = conversion all ASCII number to type long;
identify number (u, or v) = last 2 bytes of password;
return key number;

Figure 11. Password conversion algorithm.

a. Key to Password Conversion

As specified in section III. B. To facilitate the friendly use by the users,

passwords are used instead of the keys, The key to password conversion can be done in

several ways. Here we present one way that is easily implemented. A key number is

implemented as a 10-digit number since the chosen modulo number is 2147483641. Key

number as well as the index number of v (u) are converted to a 11-character password

by simply performing the shift and translation as shown in Figure 11. Hence, SKt,
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(0015206469L) is converted to 'abii06nsy2O'. In Appendix B, Table B, all Master Key

numbers and passwords are listed.

At the host system, the user password is examined to avoid the data

package being ruined by an invalid password. Verified password is then itself encrypted

and embedded in the file header starting at the 4th byte. At the remote system, the

received file header will be examined to see if it was a encrypted file. If it is encrypted,

the 11 bytes starting at 4th byte in header will be used for service key number

conversion. Meanwhile, the user must provide the password for key computation. In

Appendix B, all Master Key numbers and passwords are listed.

b. Service key number computation

In using the Master Key, it is assumed that there is no password

distributed electionically and the access is done by key number computation. The Master

Key numbers are not necessary to be the same as service key numbers before

computation. Therefore, different Master Key numbers may result same service key

number based on a unique ;.

Recall the discussions in sections A, and B, the modulus operation was

taken in each arithmetic operation. While implementing in software, care has to be taken

that modulus operation will not work if it is trying to mod a key number result as in (1),

since multiple more prime numbers normally produce a large digits number. Without

memory concatenation, the product result will be truncated and become useless before

modulus process because the Floating Point Number System allows limited digits

(Mantissa) representation, (e.g. IEEE-double precision has 53 bits [Ref. 16]). An
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example here is the T value by definition

69

T = lPl = 409 - 401 • 397 . 37 • 31 (12)
n-0

It result a number that has more than 70 digits and can not be easily

represented. Moreover, since the products of primes will become the power of k, no

Floating Point Number System can support such large value. To solve this problem, a

procedure we called "wrapping" is implemented in software as listed in Appendix A.

Modulus operation is now beginning at first koP, and repeat in each multiplication until

the end, to restrict each result in the range [0, 2147483640]. Now (1) becomes

-T

SK, = mod(k. UI)

'I P

=mod (k 0 ""

(13)

mod(k 0 ",'' )

= mod(kP- ' )  foZ SaSb. ,Sn Si

= mod (mod ( (... mod ( (mod (kp') ) .) .) Pn) )
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Furthermore, to prevent a large prime number as a power, any inner term

in (13) can be divided into

mod(mJ) = mod(.. mod(mod(m) m) 2 ... m)p (14)

Key number computation is implemented only at the remote system right

after password conversion. If the Master Key number after computation is equal to the

service key number, picked up from file header, then the program will decrypt with the

password obtained from the file header. The algorithm for password verification and key

number computation is shown in Figure 12.

2. Data encryption

Encryption on a compressed data package is an option to user. It may be

specified at the command line when executing the software at the host system. If it is

requested, the function encrypto will process after password is verified. At remote

system, program will automatically get the first 3 bytes in file header to check if it is an

encrypted file and verify the key. Notice that encryption algorithms are varied from user

to user, so are the password encryption of file header and key number conversion. They

can be implemented in different schemes to meet the data security requirements, for

example the DES. After all, the Master Key scheme will not be affected by different

encryption schemes and it drives the access control.

In this experimentation we used the UNIX crypt() (the key generation part

from "Makekey" has been modified to Master Key password conversion) routine for
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loop: request user enter password;
if user password == header password: (the case of

encrypted user)

proceeding decryption;

else if length of password != 11:
if over three tries:

recover original file and exit;
else

display error message then go to loop;

else
passw2num(user password);

encrypted key number = passw2num (header password);
initial for key computation;
if Master Key user:

get belonging service list matrix;
loop to product of relate primes (v) times:

keynum_mod();

else (the case of superior service keys)
loop to product of relate primes (u) times:
keynummod();

if computed key number == encrypted key number:
proceeding decryption;

else
if over three tries:

recover original file and exit;
else

display error message then go to loop;

Figure 12. Password verification algorithm.

from "Makekey" has been modified to Master Key password conversion) routine for

illustration. It is a one-rotor machine encryption algorithm designed along the lines of

Enigma but considerably trivialized, encryption and decryption uses the same key. Each
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included 3 bytes for encryption distinguish and 11 bytes for password (it is the keyword

to encrypt too). Encrypted data packages must be decrypted before they can be

decompressed. To decrypt a package, a shift operation is used to decrypt the 11-byte

keyword for the encryption key which in turn decrypts the compressed data stream if the

password has been verified.
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IV. RESTRICT CHARACTER SET TRANSLATION

Since Naval message traffic uses the restricted character set listed in ntp3 annex C,

the compressed and/or encrypted package has to be translated using this restricted

character set. A restricted character set of N symbols can be represented as

C = f a , a2 . . . . . . E } where N 256. (15)

Without loss of generality, it is assumed that the restricted 45 (N) characters are

in the contiguous decimal value interval [46, 90] (ASCII '.' to 'Z'). In a source package

(without character translation) each input byte of 8 bits can assume 2' = 256 various bit

patterns and all patterns are equally likely to occur. When mapping a byte of 8-bit to one

of the 45 restricted character, one may let 40 bit patterns uniquely map to corresponding

40 characters; the mapping of other 216 patterns have to use 2 characters each. On the

average, the translated file is expanded to 185 % of the original file since

40 1 • 216 X 2 = 1.84375 - 184.37%.
256 256

The expansion ratio (85%) is unacceptably high therefore a source file must be

translated in blocks of bits (< 8) when data compression efficiency is concerned. Since

N = 45, 5 < 1og 2(45) < 6. Thus, the bit pattern to be translated could be blocks of

either 5-bit or 6-bit depending on the efficiency of expansion ratio to be discussed below.
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A translated character (8 bits) can represent a block of either 5-bit or 6-bit of input bit

stream. This implies that an output byte (character) always starts with a '0' bit and the

other 7 bits vary in 45 patterns. Hence, a shift operation is needed to output a byte in the

desired range. Three basic translation methods are discussed as follows:

1). Scan input stream in 6-bit blocks. Since a 6-bit block may form 64 different

patterns, with only 45 characters to map there are 44 lucky 6-bit pattern that can

map to a single character in expression (15) whereas the rest of 20 patterns have

to be translated in two combined characters oa4l5a i 45.

2). Scan input stream in 5-bit blocks. Since a 5-bit block may span 32 different

patterns, with 45 characters to map there are 13 characters in the restricted

character set unused.

3). This is an improvement to the second method. 13 unused characters are assigned

to corresponding 6-bit patterns. It scans input stream in 6-bit blocks, examines

the values and will translate 6-bit block whenever possible.

A. EXPANSION RATIOS

It can be shown that the first two methods are not as efficient as the third method.

Without a prior knowledge of the source stream, it is reasonable to assume that all bit

patterns are equally likely in the following discussions. Let b1, b2 be the number of bits

used to encode a translated character (byte) and PbI, Pb2 be the corresponding probabilities

of occurrences in translation. The expansion ratio q of method 1 is then
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(8 -b1 ) (8 x 2-b 2)
8b (P) b (-P 1,) = 0.75 - 75% (16)

where

bi = 6, pb= - 0 06 88

b 2 =6, pb = 1 - Pb.= 0.312

In equation (16). the second term indicates that we expand from 6 bits to 2 bytes

for the 20 unlucky 6-bit patterns. Similarly, we can compute the expansion ratio for the

second method as

i 8-5 0.6 -60%.
5

For the method 3, b, = 6, b2 = 5, thus

(8-6) (13) (8-5) (-51):0.546 - 54.6%. (17)
6 6 4 )+ 5 694

The third method provides the best of all three translation methods and is very close to

set standard of 50%.

Variants of the method 3 can increase the probability of 6-bit block pattern

translation. But, they are not as efficient as the method 3. For example, when N = 45,

34



one may assign 16 patterns for 4-bit and 29 patterns for 6-bit. Two other variants are (1)

8 patterns for 3-bit and 37 patterns for 6-bit and (2) 4 patterns for 2-bit and 41 patterns

for 6-bit. We calculate the corresponding expansion ratio for each case as follows:

* 29 patterns for 6-bit with others for 4-bit

(_ 298-4 1__)_

+ ( ( (-) =(5 0.698 69.8%
6 64 4 64

* 37 patterns for 6-bit with others for 3-bit :

q 8-6 )- + ( '-) = 0.896 9 89.6%
6 64 3 64

* 41 patterns for 6-bit with others for 2-bit

8-6 4- + (8-2) (2- 1.292 129 .2%
6 64 2 64

All the results are worse than the method 3 because the second term in each

calculation grows faster than the reduction of the corresponding probabilities. Moreover,

it is impossible to translate more than 6 bits in each decision when N < 64. To

generalize the -q computation of method 3 for restricted character set of size N in the

range [2, 256] the -q can be calculated as follows:
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= (8--b) (P,) (8-b 2 ) (18)n= b1  b2

N - 21 109 2()A l
2 log, (Al I

b2 = 0log2(N I, p p=1 - p

Table HI. A testing result of compression and translation.

FILE SIZE( COMP TRANSLATION C&R

I BYTE) SIZE 7 SIZE %ORG

TXT 24969 9361 38259 53.2% 14388 57.6%

WPR 25195 10189 38745 53.8% 15667 62.2%

CPG 17325 4517 26319 51.9% 6955 40.1%

EXE 24630 13204 37969 54.2% 20221 82.1%

PAK 76644 30129 117622 53.5% 46294 60.4%

TXT : Text file. WPR : Wordperfect file.
CPG : C source file. EXE : Execution file.
PAK : Combined of 90% ASCII and 10% binary
file.

COMP : Compressed only.
E: xpansion ratio due to translation.

C&R Compressed and Translated.
%ORG % of original file size.

The equation (18) is similar to equation (17) except that it is now parameterized

with N. Theoretically, by taking the expansion ratio 54.6% of equation (17) with an

average compression ratio around 39.3% (derived from Table II, 'PAK' file), the

compressed and translated file size would be about 39.3% x ( 1 + 54.6% ) 60.77%
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of original file size. Table III shows testing results of different type of files after

compression and character set translation. The expansion ratios in 4th column agrees with

the theoretical value in equation (17). The larger variance among testing results,

however, is shown in the last column ("C&R %ORG" column) when both compression

and translation are performed. This is due to the different file type benefits different

compression ratio. It is interesting to note that PAK file (combination of 90% ASCII text

and 10% image binary data which is a Data Representation Format specified by the

Navy) size shown in 5th column becomes "C&R" 60.4% of original file, fairly close to

theoretical ratio (60.77%) described above.

7

4

0 .
0 50 100 150 200 250 300

Number of choracters

Figure 13. Expansion ratio with variable character numbers.

Figure 13 shows the plot of equation (18). The expansion ratio decline sharply

before N reaches 16. Notice the stairlike steps when N is a power of 2, ratio curve

doesn't continuously vary with N. This because the ratios analysis based on theoretically

computes the translated bits corresponding probabilities. In software implementation, the
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bit-shift manipulation may improve the expansion ratio as will be explained in Section

3.

B. SOFTWARE IMPLEMENTATION CONSIDERATION

A C program (See Appendix A) based on method 3 was implemented. We now

describe the algorithm that has been incorporated in a compressed/encrypted data

package. The character set translation algorithm has two separate parts: translation (at

host system) and recovery (at remote system).

1. Translation Algorithm

The translation algorithm scans the input stream, however, in 6-bit blocks

before committing to a translation. We may assign 32 restricted characters ('.' through

'M') to decimal values interval [0, 31] for 5-bit blocks and the other 13 characters ('N'

through 'Z') to the interval [32, 44] for 6-bit blocks. If the value of the 6-bit block is in

the interval [32, 44], then the block is translated to the corresponding character. When

the value is not in the range of [32, 44] then it is either in [0, 31] or in [45, 63]. The

algorithm shifts one bit backward (unget) making the value reside in interval [0, 31] and

translates the 5-bit block. In the following discussion let S denote the decimal interval

[32, 44]. Refers to Figure 14, when the input string is coming from right to left, we

observe the following:

Bit pattern 1 ('100110', the LSB is 0):

Decimal value = 38 G S, translate the 6-bit block and output 38 + 46 ('T').
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Bit pattern 2 ('001101'):

Decimal value = 13 0 S,

translate the 5-bit block of '00110' (shift 1 bit left), and output 6 + 46 ('4').

Bit pattern 3 ('111101'):

Decimal value = 61 0 S,

translate the 5-bit block of '11110' (shift 1 bit left), and output 30 + 46 ('L').

Bit pattern 4 ('100100'):

Decimal value = 36 E S, output 36 + 46 ('R').

1 0 0 1 1 0 0 0 11011110 0 0 0 1

1 4

Figure 14. Bit pattern dissection of translation.

The displacement of 46 above is to map decimal values into the desired ASCII

code range ['.', 'Z']. The output characters will be 'T4LR .... ' and leave the last 2 bits

to be the MSB of the next 6-bit block. When the EOF or last byte of buffer is

encountered, the remaining bits will be padded with Os in LSB to form the last pattern.

For the example in Figure 14, if '10010001' is the last input byte, then the last 6-bit

pattern will be '010000' and translated to '01000' + 46 ('6'), the output is then

'T4LR6'. The inner loop of translation algorithm is listed in Figure 15.

39



loop: if the scanned 6-bit block is in interval
[32, 44]:

output (6-bit pattern+46);

else
unget 1 bit and output (5-bit pattern+46);

rebuild bit pattern from remaining bits;
if number of remaining bits >= 6:

goto loop;

else input next byte;

Figure 15. Translation algorithm.

2. Recovery Algorithm

The displacement of 46 made in translation has to be reset for each input

character in recovery at the receiving hosts. If the value after reset is in S, an original

6-bit translated pattern is assumed and a 6-bit block is recovered; otherwise it maps to

a 5-bit block. The output characters "T4LR6'in Figure 14 will be recovered to the

original bit string as shown in Figure 16.

Because the file before translation is byte-oriented, the recovery of the last

input character should complete the last byte of original compressed/encrypted package.

The inner loop of the recovery algorithm is listed in Figure 17.

Translation and recovery algorithms are two separate functions in .Ile verify()

routine of main() (listed in Appendix A). In the host system, character set translation is

final step before transmission. The program takes each byte from the temporary file built

by compression/encryption, and adds 3 bytes header in output file. Each of the 3-byte

header, of course is within [46, 91) too. Moreover, the inner loop of translation function.

40



IT' - 46 '4' - 46 'L' - 46 'R' - 46
=00100110 = 00000110 = 00011110 = 00100100

I r - I r- I I
100110 00110 11110 100100
__ _ __ _ _ __ _ __ _ _ l __ __ __ __

Recover 1st byte 2nd byte last byte..

'6' - 46

= 0001000

01000

Ignore

Figure 16. Bit pattern dissection of recovery.

loop: input one byte from translated file;

if (character-46) is in interval (0, 31]:
skips 3 zero bits and recover 5 bits;

else
skips 2 zero bits and recover 6 bits;

if number of bits in pattern buffer >= 8:
output 1 byte and goto loop;

rebuild bit pattern buffer from remaining
input bits string;

Figure 17. Recovery algorithm.

trans0 (See Figure 15), can be designed to incorporate the output buffer of

compression/encryption for various compression algorithms. For instance, the variable

buffer size in LZW algorithm requires variable loop index n E [9, 13].

At the receiving system, recovery operation is proceeded first by examining the file
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header, similar to the encryption operation. The recovery function i.e. recov( shown in

Figure 17, provides an option that allows user to modify/update the data package without

change the translated format. The translation will be proceeded automatically after

modification. Hence, the whole procedure becomes:

recovery - [decryption] -- modification - [encryption] - translation.

C. IMPROVEMENT BY PATTERN REASSIGNMENT

In this section, each bit pattern corresponds to output character will be examined,

and shows how we can further reduce the translation expansion ratio by suitable reassigns

each of them.

1. Unused Patterns in Translation

The translation algorithms discussed in previous sections examines an input

6-bit block and translates it to either a 6 bits or a 5 bits block. Theoretically, when each

input pattern is assumed to be equally likely occurred, having compressed and/or

encrypted, as discussed in Section 2, the method 3 with expansion ratio 54.6% seems to

be an optimized algorithm. Having enumerated all patterns, however, we can further

reduce the expansion ratio to less than 50%.

The clue is that certain 5-bit patterns do not appear in practical translation

procedure due to the 1 bit shift operation when the 6-bit value is not in S or interval [32,

44]. Figure 18 lists all 6-bit patterns with corresponding decimal values and output

characters. Notice that in Figure 18 the 5-bit blocks in sets SL and Su exhibit

redundancies and six patterns do not occur (values in interval [16, 211), for instance, the
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first two 5-bit blocks in SL are both '00000'. The 6 missing patterns are '10000',

'10001', '10010', '10011', '10100', and '10101' with corresponding characters ' > ', "?',

'@', 'A', 'B', 'C' respectively. In other words, when use method 3 in Section 2 we are

translating 64 6-bit patterns to 39 (45 - 6) characters with 26 of them appear twice and

leave 6 characters unused. The effort now is to translate patterns in SL or Su in 6-bit

block by assigning unused characters to them. Reexamining Figure 18, we can verify that

these missing characters in fact did not appear! That is, what we have done in previous

section is restricted to 39 characters instead of 45. This observation could lead to the

improvement of expansion ratio.

2. Characters Reassignment

We now consider how to use the 6 unused characters. These 6 unused

characters may be assigned to the first six unique 6-bit blocks of Su (from '101101' to

'110010'). That is, we can assign these 6 characters to values in [45, 50]. By doing this,

the characters originally assigned to interval [45, 50] (4 characters : 'D', 'E', 'F', and

'G') become unused. These four characters can be used to substitute another four 6-bit

patterns, say [51, 54] (from '110011' to '110110'). Moreover, the characters 'H' and 'I'

correspond to [51, 54] are reassigned to [55, 56]. This recursive characters reassignment

may continue until value 57 was assigned when no more unused character. There are

6+4+2+1=13 characters has been reassigned. As shown in Figure 19 through

appropriate displacement of +46 (within SA), +30 (within S'), or +59 (within SL) we

can rearrange all output characters to be contiguous similar to that in ASCII code. The

6-bit patterns '100000' through '111001' (interval [32, 57]) is now assigned to characters
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6-BIT PATTERNS 5-BIT VALUE* 6-BIT VALUE OUTPUT CHAR-.

0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 1 '/'

SL

0 1 1 1 0 1 14 '<'
0 1 1 1 1 0 15
0 1 1 1 1 1 15 '

1 0 0 0 0 0 32 'N I ""

1 0 0 0 0 1 33 '0'

S

101011 43 Y

1 0 1 1 0 0 44 'Z'

1 0 1 1 0 1 22 1D'
1 0 1 1 1 0 23 'E'

1 0 1 1 1 1 23 'El

Su

1 1 1 1 0 1 30 L'
1 1 1 1 1 0 31 'M'

1 1 1 1 1 1 31 IM'

When unget 1 bit. "" Total 39 choices. 'N'= 32 + 46.

Figure 18. List of 6-bit patterns and corresponding output characters.

'>' through 'W'. All other 6-bit blocks (in SA or S.) still have to be translated in 5-bit

block.

3. Expansion Ratio Improvement

The expansion ratio is improved because we increase the probability of

translating 6-bit blocks and reduce that of 5-bit blocks. For all 64 possible 6-bit patterns,

44



6-BIT PATTERNS 5-BIT VALUE 6-BIT VALUE OUTPUT CHAR.

SA

0 1 1 1 ili 15

1 0 0 0 0 0 32 '>'
1 0 0 0 0 1 33

1 0 1 0 1 1 43 'I'

1 0 1 1 0 0 44 oil
So

1 0 1 1 0 1 45 'K'
1 0 1 1 1 0 46 L
1 0 1 1 1 1 47 M
1 1 0 0 0 0 48 'N'
1 1 0 0 0 1 49 'o

1 1 0 0 1 0 50 p
1 1 0 0 1 1 51 Q

1 1 0 1 0 0 52 R
1 1 0 1 0 1 53 's'

1 1 0 1 1 0 54 T
1 1 0 1 1 1 55 'U'

1 1 1 0 0 0 56 IV%

1 1 1 0 0 1 57 w

1 1 1 0 10 29 IX'
1 1 1 0 ill 29 'X'

SB 1 1 1 1 010 30 lye
1 1 1 1 0 1 30 Y '
1 1 1 1 1 0 31 'Z'
1 1 1 1 1 1 31 Z'

Figure 19. List of 6-bit patterns with new assignments.

we now have 26 patterns that can be translated and 38 patterns have to be translated in

5-bit blocks. The overall expansion ratio is then

= 8-6 26 8 5 5 0.4917 - 49.17%. (19)
6 64 5 64

This expansion ratio shows a 5.42% improvement over the expression (17)

45



and achieves the specification set by the Navy. Hence, equation (18) can be rewritten as

b,)Ph , Pb'

1= - 2lo, ( J )X 2 (20)bi r 19 lg (N1) 1, PX1 - 2I ogI "

b2 - [log2 (N Pb2 " 1 -

Where Pbt doubles the probability of equation (18) is the observed result from previous

discussion. The number of characters assigned to translate each 6-bit block can always

result in the same number of unused 5-bit characters; this is true when N varies. To

compare with previous analysis, we can plot the expansion ratio vs number of characters

for both equation (18) and (20) shown in Figure 20. Refers to Figure 14, the area

between two curves is exactly the ratio improved by reassigning the unused characters.

It seems that when N is in the range of [32, 64] the expansion ratios are quite

satisfactory. Nevertheless, practical operation environment dictates the choice of N. For

example, in order to accommodate a set of Morse code communication, the choice of N

= 45 seems reasonable regardless of expansion ratio. When N < 16, it is not practical

to perform the character translation since the expansion ratio can be as high as 700%.

On the other hand, when N approaches to 256, there is no need for character translation

since the source character set and the target character set are equal in size.

The modification of the translation program from that of method 3 to

accommodate the observation made in this section is straightforward by adjusting the
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Figure 20. Expansion ratio plot of improved algorithm.

partitions for Su, S, SL (Figure 18), to SA, S', SB (Figure 19).

D. TRANSLATION EXPERIENTS

Figure 21 shows a short ASCII file that is to be processed through data

compression, data encryption, and character set translation (phone numbers are not real).

The compressed and encrypted file after character set translation is shown in Figure 22;

all characters appeared within '.' and 'Z' as desired (note that, there is no CR nor LF,

the file is displayed in multiple lines for readability). Because the original file is small

and therefore is resistant to compression; file size in Figure 22 is larger than that of

original file.

From the discussion in Section C.3. (Equation (20)), the theoretical compressed and

translated file size can be reduced to : 39.3% x ( 1 + 49.17% ) 58.62%. This

47



I was very pleased to receive your draft data
compression research proposal dated February 27th. As
requested, I am enclosing a detail list of our projected
requirements to further assist you in smoothing your
proposal and formalizing thesis work on this subject. Please
feel free to contact LT Frank at (Comm) (202) 452-6313 or
(AV)911-1313 if additional clarification will be helpful.
Thank you for your professional interest in our data
compression needs.

Sincerely,

Figure 21. A sample original text file.

B2C8/3>:0.F4./C6:B./55XW;CP.2/A>2N63/24160.27043.H;A<R6D;;
JY.8/?22R7@Z;3M<>N74.IP;TO<7.XJK3:T3P6L9:PPALJT6>X4Z.88;MT
;@P;4F4Z290MX=3.8BHQ<90Q<B8<X:9G?6455U;@T<YRY5:UXHU;NR8B.=
ZP9lJ9.UZ7;YO;U;LW:5:OB=ZWLK3;94W<Dl6OXWBTX4?<N64lIlXEASDO
MXM5Y3LV<TR<Z:LXAD82XZRXR=<E=56<VPT7SD=YQ7FlMBI=A80P2M2/<W
H>;;:Y7EDD2LNUY8:<N=SY8UD==6K;98LZ=OZ6N6ZT.5:4J6554UXZ;I=H
YG:Y=Y/<F<HN;YOTLO;U3KClLKlU<Y==ZKUZXQ8IGM749LXIZPOXWQX<34
B9K2UO?.l=YOW;BQZDX/ST92?OO8KY/TlM8/48CNIZ17.L<XT3=J6R7282
<ZKF8VPR7RR:VBTQGJP91:QVRWVSE>;<8FOJGY;I.Q:T9155D:4H6<7<94
O;lGJUIZS3ZZNHHBM5RU>X8OB84/>U62X=P<<<J/MH?::I.7W@IO5M3TKE
C:BC@F2J.>63>.3N.:HI2>.7QYY9:L6.>:<.6/>0/20?24F2J0>N62.100
7>2ZV

Figure 22. After compression, encryption and translation.

improved algorithm has been applied to the same set of testing files used in Table IV

with three more "PAK" files. The results are listed in Table IV. Expansion ratios in

Table II are consistent with expression (19). The PAK iles in "C&R" column are

reduced to 58.23%, 59.78%, 58.94%, or 54.76% of original file sizes; these are very

close to the theoretical value 58.62%.

The discussion in this chapter assumed that the occurrences of all bit patterns are

equally likely in the input to the translation algorithm. This is a reasonable assumption

since the input bit patterns are dictated by the pointer values in unknown
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Table IV. Testing result of improved translation algorithm.

IMPROVED TRS. C&R
FILE SIZE SIZE 77 SIZE %ORG

TXT 24969 37243 49.16% 13853 55.48%

WPR 25195 37570 49.12% 15082 59.86%

CPG 17325 25864 49.29% 6703 38.69%

EXE 24630 36745 49.19% 19695 79.90%

PAK 76644 114625 49.56% 44626 58.23%

PAKI 39024 58327 49.46% 23327 59.78%

PAK2 104622 156516 49.60% 61662 58.94%

PAK3 174226 260362 49.44% 95402 54.76%

IMPROVED TRS. Improved translation algorithm.

compression/encryption algorithms. When bit patterns are not equally likely the

translation algorithm may be more sophisticated but may achieve a better expansion ratio.

For example, if a text file to be processed does not require compression nor encryption

the expansion ratio of the character set translation should be smaller than the theoretical

49.17% because the first '0' bit and/or the second '0' bit of each input byte may be

skipped in the translation process.
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V. CONCLUSIONS

Although the key management scheme discussed in this report is perfectly feasible,

it is by no means the only or the best possibility. The method employed here allows only

for the availability of different keys for different links and hosts but does not differentiate

the different functions or activities for which the keys are used. The functions stressed

in this study are data compression and character translation; however, the host system

is most likely more versatile. Moreover, the transmissions between hosts, remotes and

hosts, remotes and remotes, if independent of each other in encryption, may provide

much better protection. These important issues could be solved by a key management

scheme based on the popular private-key algorithm, DES. This is beyond the scope of

this thesis. Nevertheless, its possibilities introduce a worthwhile follow-on research.

Finally, to make all algorithms and source code completely transportable among

hardware/operating system environments, the work of error detection and correction

becomes an absolute necessity. It is possible to use 'checksum' or CRC techniques to

detect transmission errors by attaching d characters to each block of b characters. These

d checking characters (D) are computed from the b information characters (B).

Traditional checksum is not capable of locating which byte in B is in error since

characters in B may have b! permutations and some permutations may result in the same

D. To facilitate the error correction we may have to use some non-commutative
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operations in the construction of D from B. For instance, characters in B are arranged

in two matrices and their product is used as D. Because matrix multiplication is non-

commutative it may be a starting point for character-oriented error detection and

correction. Other powerful error correction codes such as R-S (Reed-Solomon codes) are

also available for further study.
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APPENDIX A. PROGRAM LISTINGS

This is a routine program to determine whether the input
file is compressed file, compressed and encrypted file,
compressed and translated file, or mixed all of three;
the routine will recover, decrypt, or uncompress
according to the command line options which given by
main(.

Tsai Chien-C

/*******************************

Header files and local
variables.

#include "zip.h"
#include <math.h>

#define KEYLEN 12 /* included '\0' for sure */
#define MASK 0377 /* capture the lower 8 bits */
#define ROTORSZ 256 /* limited within byte pattern*/
#define BASEMOD 100000000L /* modular number for password

conversion */
#define MODNUMBER 2147483641L

/* 2^31, mod number, good for
'long' operation, it can be
expanded to increase the
security of password if
needed */

#define TF1 "zzzzzzzz.l1l" 1/* temporary translated file */
#define TF2 "zzzzzzzz.222" /* temporary recovered file */
#define TF2 "zzzzzzzz.333" /* temporary (de)encrypted

file */
#define INF "oooooooo.000" /* temporary input file if any

operation is performed
local long SERVKEY; /* modulated service key number

*/
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local long MASTERKEY; /* modulated master key number*/
local long TEMPKEY;
local long double ANSWERKEY;/* master key number after

computation */
local char pass_word[KEYLEN);

/* password from stdin or
compressed file header */

local char codel[ROTORSZ]; /* three (de)encrypt index
random code tables */

local char code2[ROTORSZ];
local char code3[ROTORSZ];
local char deck num[ROTORSZ];

/* for use with shuffle()
presented */

local char keyword_buf[ll]; /* get password as the key to
generate random table *1

local char *translated = 'B2C\0";
/* the first three bytes of

translated file */
local char *encrypted = "2?\0";

/* the first three bytes of
encrypted file */

FILE *tempfl, *tempf2, *tempf3;
/* temporary files generated by

trans(), recov(), and
encrypt() */

FILE *infile; /* input file from main() *1

I************************************************************

Function first_pass() get the address of 'zipfile' from
main() pass to verify() for file type operation, a output
file is to be renamed according to the parameter produced
by verify(, then return the parameter with a original
'zipfile' file name but point to new address.

int first_pass()
{

int ftype;
char *original;

pass word(ll] = '\0'; /* take only 11 bytes password*/
strcpy( original, zipfile );

/* keep the input file name */
objectfile = zipfile; /* get the input file address */
ftype = verify); /* pass to file type operations*/
if ( ftype != 1 && ftype != 5
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rename( zipfile, INF );
/* file had been recovered or

decrypted, keep original
input file in case of any
error during decompress
operation; otherwise unlink
it */

switch ( ftype )

{
case 1: case 5:

break; /* no operation is performed,
either a null file ( output
file name after compressed
or purely compressed file */

case 2:
rename( TF3, original );
strcpy( zipfile, original );
break; /* file was decrypted, now

change the file name to the
same as input file, but new
address */

case 3:
rename( TF2, original );
strcpy( zipfile, original );
break; /* file was recovered,substitute

with original name but new
address */

case 4:
rename( TF3, original );
strcpy( zipfile, original );
unlink( TF2 ); /* file was recovered and

decrypted, delete temporary
file after file name switched

*/
}

printf( "%s\n", zipfile );
objectfile = zipfile; /* to be used later in trans()

and encrypt() */
return ftype; /* back to main(), 'ftype'

indicate what operation ever
been performed */

Function second_pass() determine whether a compressed
output file to characters translation, encryption or not
by remember the command line options or the parameters
in first pass(). then assign a desired output file name
and delete all temporary files.
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second_pass()
{
if ( to_encrypt == 1 ) encrypt( toencrypt );

/* go encryption if command line
specified or input file it
was */

if ( to trans == 1 ) transo;
/* go characters translation if

command line specified or
input file it was */

if ( totrans H to_encrypt ) unlink( zipfile );
/* now delete the temporary file

if either trans() or
encrypt() was taken */

unlink( INF ); /* the original input file now
is useless */

if ( to_trans && to encrypt :1 to_trans && !toencrypt )
rename( TFl, zipfile );/* once trans() was performed,

the output file will be TFl*/
else if ( !to-trans && to-encrypt ) rename( TF3, zipfile );

/* encryption only, then output
TF3 */

else return; /* nothing happen, go back to
main() */

exit( 0 ); /* otherwise, quit here *1}

/************************************************************
The function verify() is a main routine for each
operation, it opens the input file, check the header and
determine what kind operation should be performed then
pass a parameter back to function first_pass().

int verify()
{
char identify[3];
int ftype, i;

if (( infile = fopen( objectfile, "rb" )) == NULL )
return ftype = 1; /* just a output file name

assigned by user *1
else

{
for ( i = 0; i <= 2; i++

identify[i] = fgetc( infile );
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/* get the header */
if ( strncmp( identify, translated, 3 ) == 0 )

{
/* input file was translated */

to trans = 1; /* set index, file should back
to same form after operations
in main() */

recov(; /* recover from a translated
file */

fclose( infile );
infile = fopen( TF2, "rb" );

/* open the temporary file
generated by recov() */

for ( i = 0; i <= 2; i + )
identify[i] = fgetc( infile );

/* get the header again */
if ( strncmp( identify, encrypted, 3 ) == 0)

{
/* input file also was encrypted*/

ftype = 4;
for ( i = 0; i < 11; i++ )

password[i] = fgetc( infile ) + 40;
/* now get the encrypted

password header and convert
to real keyword */

to_encrypt = process_passw();
/* go check if the user's

password is matched */
if ( to-encrypt == 1 ) encrypt( ftype );

/* verified! and decrypt it */
coded = 1; /* remember it, random table

can't random again */
return ftype; /* it was a compressed,

encrypted and translated file*/
}

else
{
fclose( infile );
return ftype = 3;

/* it was a compressed and
translated file */

}
}

else if ( strncmp( identify, encrypted, 3 ) == 0
{
ftype = 2; /* it was a compressed and

encrypted file */
for ( i = 0; i < 11; i++
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password[i] = fgetc( infile ) + 40;
/* get the encrypted password

header and convert to real
keyword */

to-encrypt = processpassw);
/* go check if the user's

password is matched */
if ( toencrypt == 1 ) encrypt( ftype );

/* verified! and decrypt it */
coded = 1;
fclose( infile );
return ftype;

}
else

{
fclose( infile );
return ftype = 5; /* it was just a compressed file

but not in translated or
encrypted form */

}
}

/************************************************************

The function process_passw() verify the user's password
by implemented the "Masterkey" scheme, both user password
and service ( compressed package ) password are decrypt
to a 10 digit ( long ) number by function passw2num()
first, the 10 digit number should not larger than mod
number which defined as 2147483641; further, the user's
number is computed according to their list of service
key, again mod by 2147483641 to compare with sei vices
number, return 'I' if equal, otherwise let user has
another try. Primes number and service list in this
function can be modified to allow system expansion and
become flexible. Mod number can be changed to a larger
number too, which will increase the password complexity.
In this experiment, I built a 70 services system, and 8
masterkey user, details was told in Chapter "Multilevel
security".

int process_passw()
{
int try = 1, i, j, k, s_path;
char passw_in[KEYLEN);
int P(70] =

{409, 401, 397, 389, 383, 379, 373, 367, 359, 353,
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349, 347, 337, 331, 317, 313, 311, 307, 293, 283,
281, 277, 271, 269, 263, 257, 251, 241, 239, 233,
229, 227, 223, 211, 199, 197, 193, 191, 181, 179,
173, 167, 163, 157, 151, 149, 139, 137, 131, 127,
113, 109, 107, 103, 101, 97, 89, 83, 79, 73,
71, 67, 61, 59, 53, 47, 43, 41, 37, 31};

/* 70 prime numbers from 31,
each assigned to a service */

int s list[8][70] =
{{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

10, i, 12, 13, 14, 15, 16, 17, 18,
20, 21, 22, 23, 24, 25, 26, 27,
30, 31, 32, 33, 34, 35, 36,
40, 41, 42, 43, 44, 45,
50f 51, 52, 53, 54,
60, 61, 62, 63, -1

/* services list of masterkey
#1, the numbers matched the
primes in P(] *

{0, 1, 2, 3, 4, 5, 6,
10, 11, 12, 13, 14, 15, 16, -1

/* services list of masterkey #2*/
{40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
-1

/* services list of masterkey #3*1
{20,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
-1

/* services list of masterkey #4*/
{ 0, 1, 2, 3,
10, 11, 12, 13,
20, 21, 22, 23,
30, 31, 32, 33,
40, 41, 42, 43,
50, 51, 52, 53,
60, 61, 62, 63, -1 },

/* services list of masterkey #5
*0

{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19,

20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
60, 61, 62, 63, 64, 65, 66, 67, 68, -1 },

/* services list of masterkey #6
*5

58



{ 0,
10,
20,
30,
40,
50,
60, -1

/* services list of masterkey #7

{40, 41,
50, 51, -1 }};

/* services list of masterkey #8
*/

passwin(11] = '\0'; /* make sure no garbage follows
*/

printf( "File was encrypted, please...\n" );
loop: printf( "\nEnter password: " );

/* request for user's password*/
scanf( "%s", passwin );
if ( strncmp( passwin, pass-word, 11 ) 0 )

return 1;
/* the password is exactly the

same as that got from file
header, it indicated the user
was the one who encrypted it,
of course he is authority to
access ./

if ( strlen( passw_in ) != 11
{
printf( "Invalid password! "

/* we don't consider a password
other than 11 characters, so
give him one more try

if ( try == 3
{
printf( "Sorry, no lucky guess, good bye!" );
if ( to trans == 1 ) unlink( TF2 );
exit( 0-); /* triple wrong guesses, who is

the boss? bye anyway. check
if file was recovered, then
delete the temporary file
generated by recov() ./

}
++try;
goto loop; /* try one more if not reach

three ./}
k = passw2num( passwin, 1 );

/* take care the user's password
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first convert it to 10 digit
number */

s_path = passw2num( password, 0 );
/* then convert the password in

file header */
s_path = 80 - s_path; /* determine where the service

located */
ANSWERKEY ( long double ) MASTERKEY;

/* initialize the base number,
it is, in fact, the masterkey
number */

TEMPKEY = MASTERKEY;
printf( "Verifying" );
j = 0;
if ( k <= 7 ) /* it is a masterkey user */

for ( i = 0; i <= 69; i++ )
{
if ( i == s listk][j]

{
/* care only the one matched

with services list *1
if ( i < ( s_path - fmod( s path, 10 ))

i > s_path
{

/* the overlay parts ( with
service key ) will not be
considered *1

keynummod( P[i] );
/* now we got what we want,

let's roll it */
TEMPKEY = ( long ) ANSWERKEY;

++j; /* update service list to next
one */

if ( i % 5 == 0 ) printf( "." );
/* just tell you I am working */

else
{
k= 80 - k; /* it is another service key, we

have to find out the
relationship in between, see
if it > the encrypted one */

for ( i = 0; i <= 69; i++ )
{

if ( i > spath && i <= k )
{

/* consider those prime numbers
between two services only *1
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keynum mod( P[i] );
TEMPKEY = ( long ) ANSWERKEY;

}
if ( i % 5 == 0 ) printf( "." );

}
}

printf( "\n"
if ( SERVKEY == ( long ) ANSWERKEY ) return 1;

/* return greeting signal if
user's number matched */

else
{ /* else please try again if not

over three times yet */
printf( "Invalid password!" );
if ( try == 3

{
printf( " Sorry, no lucky guess, good bye!" );
if ( to trans == 1 ) unlink( TF2 );
exit( 0-);

}
++try;
goto loop;

}

I************************************************************

The function passw2num() convert each password to a 10
digit ( long ) number by a random pattern which assigned
by programmer. then return a value as service list ( or
service number ) to be referenced.

int passw2num( pass 2 num, mkorsk )
char pass_2_num(KEYLEN];
int mkorsk;
{
int k, head, i=l;
char ch toconvert[KEYLEN];

pass_2_num[1l] = '\0'; /* make sure no garbage follow*/
ch to convert[ll] = '\0'; /* each character will convert

to 0 - 9 ASCII and put into
here */

head = pass_2_num[0] + 3; /* take care first character
with + 100 - 97, '+ 100' is
to avoid a situation of
number start with 0

itoa( head, ch to convert, 10 );
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/* put first two digit into
buffer */

ch to convert[3] = pass_2_num[l] - 49;
ch to convert[4] = pass_2_num[2] - 52;
ch-to-convert[5] = pass_2_num[3] - 55;

/* convert 2nd, 3rd, 4th
character to be 3rd, 4th, 5th
digit in buffer */

ch toconvert(6] = pass_2_num[4];
ch-toconvert[7] = pass_2_num[5];

/* just copy the 5th and 6th
character to be 6th and 7th
digit */

ch to convert[8] = pass_2_num[6] - 58;
ch to convert[9] = pass_2_num[7] - 61;
ch to convert[10] = pass_2_num[8] - 64;

/* convert 7th, 8th and 9th
character to be 8th, 9th, and
10th digit in buffer */

k = atoi( pass_2_num + 9 );/* 10th and 11th character
referenced as the serv'ce
list or service number */

while( ch to convert[i] == '0' ) ++i;
/* before convert to a ( long )

type, let's skip those
useless '0' */

if ( mkorsk ) MASTERKEY = atol( ch to convert + i );
else SERVKEY = atol( ch to convert-+ 1 );

/* convert to ( long ) type
begin with non-zero digit */

return k;

The function keynummod() calculate the result of mod(
MASTERKEY*MASTERKEY ) up to 'p' times loops, 'p' is the
prime number of each service. The computation period
could be longer if a service list has more members, but
the result will not over mod number 2147483641 since it
keep mod operation on each result.

keynum_mod( p
int p;
{

int i;

for ( i = 2; i <= p; i++
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{
ANSWERKEY *= ( long double ) TEMPKEY;
if ( ANSWERKEY >= MODNUMBER ) ANSWERKEY = fmodl(

ANSWERKEY, MODNUMBER );
}

The function encrypt() is part of the "crypt.c" routine
in UNIX which written by Berkeley 1985; It is a one-rotor
machine designed along the lines of Enigma but
considerably trivialized, the key to generate a random
table for encryption is just the password from user who
request encryption, but is the header from input file
when decrypting.

encrypt( enc
int enc;
{
register i, n1, n2, nrl, nr2;
char code[KEYLEN];
int try = 1;

code[11] = '\0'; /* this is keyword buffer to
generate random table, make
sure no garbage follow */

if ( enc == 1 && !coded)
{

/* only if user is to encrypt
the compressed file */

lop: printf( "Enter encrypted password( SERVKEY ): "
scanf( "%s", pass word );
if ( strlen( password ) != 11 ; *( password + 4 ) >

57 :: *( pass word + 5 ) > 57 1 *( pass-word + 9
> 57 *( password + 10 ) > 57 )
{

/* check the service ( user
passwcrd carefully to avoid
a encrypted file become
unaccessible */

printf( "Invalid password!\n" );
if ( try == 3

{
printf( " Sorry, can't encrypt with password\

.\n" );
exit( 0 ); /* left file as it was (

compressed ) after three

63



tries */
}

++try;
goto lop;

}
printf( "Encrypted!...\n" );

}
tempf3 = fopen( TF3, "wb" );

/* open temporary file for
(de)encryption output */

if ( enc == 1 ) /* came from second_pass(, do
encryption only */

{
infile = fopen( objectfile, "rb" );

/* the input file was compressed*/
fwrite( encrypted, 1, 3, tempf3 );
for ( i = 0; i < 11; i++ )

fputc( password[i] - 40, tempf3 );
/* write 3 byte header and

shifted password into output
file

}
else printf( "Decrypted!...\n" );

/* came from first_pass() */
strncpy( code, password, 11 );

/* password is the key to
generate random code table */

if ( !coded )
rand code( code ); /* random table can't be random

again if decryption and
encryption performs in same
target file

else printf( "Encrypted!...\n" );
n1 = 0;
n2 = 0;
nr2 = 0; /* initial index number */
while (( i = fgetc( infile )) != EOF )

{
nrl = nl;
i = code2[( code3[( codel[( i + nrl ) & MASK] + nr2

& MASK] - nr2 ) & MASK] - nrl;
/* shift input character alone

the random code table */
fputc( i, tempf3 ); /* then output encrypted byte */
nl++;
if ( nI == ROTORSZ ) /* keep index number in the

range of 256
{
nl = 0;
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n2++;
if ( n2 == ROTORSZ ) n2 = 0;
nr2 n2;

}
}

fclose( tempf3 );
fclose( infile );

/************************************************************

The function randcode() generate the random code table
according to the key ( password ) from encrypt(.

randcode( pw )
char pw[KEYLEN];
{
int ic, i, k, t;
unsigned random;
long seed;

strncpy( keyword_buf, pw, 11 );
/* get the key */

for ( i = 0; i < 11; i++ )
pw~i] = '\0'; /* clear the keyword buffer

exactly 11 bytes, go any
further will ruin the
consecutive memory location
and destroy the performance*/

seed = 123;
for ( i = 0; i < 11; i++

seed = seed * keyword_buf[i] + i;
/* growing seed number with key*/

for ( i = 0; i < ROTORSZ; i++
{
codel[ij = i; /* initial the index table
deck num[i] = i; /* not use in this routine */
}

for ( i 0; i < ROTORSZ; i++
{
seed = 5 * seed + keywordbuf[i % 11];

/* rolling key buffer to produce
different seed number each
time */

random = seed % 65521; /* random should not over 16 bit
*/

k = ROTORSZ - 1 - i; /* decrease table index as the



loop growing */
ic = ( random & MASK ) % ( k + 1 );

/* offset index decreasing as
index decreasing */

random >>= 8;
t = codel[k];
codel[k] = codelic];
codel[ic] = t; /* swap index table */
if ( code3[k] != 0 ) continue;

/* go generate next code if
buffer is not null */

ic = ( random & MASK ) % k;
while ( code3[ic] != 0 ) ic = ( ic + 1 ) % k;
code3[k] = ic;
code3[ic] = k; /* if present buffer location is

zero then we need a value
fill it by scan and swap the
index */

}
for ( i = 0; i < ROTORSZ; i++ ) code2[codel[i] & MASK] = i;

/* generate second random table
by first table as index

The function trans() check every 6-bit pattern from input
file, if the decimal value larger than 31 but less than
45, then translate this 6-bit to a character between 'N'
and 'Z', otherwise shift 1 bit left and translate a
5-bit pattern to a character between ' . and 'M , the
shifted bit then become the MSB of next 6-bit pattern.

trans()
{
char p = 'A' & OxOO;
char *outfile, *b, c;
int i, bo = 0, bs = 0, last = 1, n = 9;
unsigned char r(9] =

{ OxOO, OxO1, 0x03, 0x07, OxOf, Oxlf, Ox3f, Ox7f, Oxff };
unsigned char 1[9] =

{ OxOO, 0x80, OxcO, OxeO, OxfO, Oxf8, Oxfc, Oxfe, 0xff };
float out-bytes = 0, in_bytes = 0;

tempfl = fopen( TFl, "w" );
if ( !toencrypt )

tempf3 = fopen( objectfile, "rb" );
/* no encrypted, no TF3
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temporary, the input file
will be the compressed one */

else tempf3 = fopen( TF3, "rb" );
/* otherwise, get it from

encrypt() */
for ( i = 0; i <= 2; i++ )

fputc( *translated++, tempfl );
/* write translated file header*/

out_bytes = 3;
for (

{
i = 0;
while ( !feof( tempf3 ))

{
*b++ = fgetc( tempf3 );++i;

if ( i == n ) break;
/* input 9 bytes each time, good

for LZW too */
}

if ( i < n
{
last = 0;
n = i; /* here comes a EOF, just

remember how many byte left
in buffer

}
inbytes += n; /* input byte count */
b -= n; /* back to start address
for ( i 1; i <= n; i++

{
same: if ((((( *b & 1[6 - bs] ) >> ( 2 + bs P ) >=

32 ) && (((( *b & 1[6 - bs] ) >> ( 2 + bs ))
p ) < 45 ))

{
/* get 6-bit pattern each time,

see if the decimal value
between 32 and 44 */

fputc(((( *b & 1[6 - bs] ) >> ( 2 + bs )) p
+ 46, tempfl );

/* yes, then translate the 6-bit
to the character between 'N'
and 'Z' */

++out_bytes; /* update output byte count */
bo += 6; /* update output bit count */
}

else
{
fputc(((( *b & 115 - bs] ) >> ( 3 + bs ))
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p >> 1)) + 46, tempfl );
/* no, then shift 1 bit right

and translate the 5-bit to
the character between ' '
and 'M' *

++out_bytes;

bo += 5;
}

bs = 8 * i - bo; /* remember how many bit left */
if ( bs >= 6

{
p = ( *b & r[bs] ) >> ( bs - 6 );

/* if left bits is more than 5,
no input from buffer is
necessary, now composite the
next 6-bit pattern *1

bs = 6;
goto same; /* go check again */

}
else

{
p ( *b & r[bs] ) << ( 6 - bs );
++b; /* otherwise shift left bits to

MSB and update input buffer,
get next byte again */

I
}

if ( last == 0 ) /* the EOF case */
{
if (( p >= 32 ) && ( p < 45 ))

fputc( p + 46, tempfl );
else fputc(( p >> 1 ) + 46, tempfl );

/* output the last bit pattern
by followed the same rule */

++outbytes;
unlink( TF3 ); /* temporary output file of

encrypt() is useless now */
fclose( tempfl );
break; /* no more translate is needed*/

}
b -= n; /* keep working, back to start

address ready for next 9-byte
from input file */

bo = 0 - bs; /* output bit is bit needed for
next 6-bit pattern anyway */

printf( "Translated! expansion rate : %5.2f%%... \n",
(outbytes - inbytes ) * 100 / in bytes );

/* expanded ratio is the exceed
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byte percentage of inputfile*/

/************************************************************

The function recov() get byte one by one from input file,
check it if fall between 'N' and 'Z' then concatenate the
6 LSB to the output buffer, otherwise concatenate the 5
LSB to the output buffer.

recov()
{
unsigned char left[9] =

{ OxOO, 0x80, OxcO, OxeO, 0xfO, Oxf8, Oxfc, Oxfe, Oxff };
int size, bi, i, b i = 0, bs = 0, n = 9;
char *b, p = 'A' & OxOO;

tempf2 = fopen( TF2, "wb" );
for ( ;;

{
size = 0;
*b = p; /* output buffer fill with the

bits last loop left */
b i = bs;
if (( p = fgetc( infile )) == EOF ) break;

/* quit if end of file, go take
care output buffer */

p -= 46; /* shift back to original value
*/

if ( p < 32 ) bs = 5; /1 if the decimal value less
than 32, we have 5 bits to be
plug into output buffer */

else bs = 6; /* otherwise concatenate 6 bits*/
lop: ++size;

while ( size <= n ) /* up to 9 bytes in output
buffer */

{
while ( bs > 0 ) /* fill into buffer if any bit

available */
{
*b = *b & left(b_i] (( P <<

( 8 - bs )) >> b i );
/* concatenate output buffer to

a byte pattern */
bi = min( bs, 8 - b i );

/* the inserted bits should not
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exceed either the available
bits or the bits buffer
needed */

bs -= bi; /* update the bits available */
b i += bi; /* update the inserted bits */
if ( bi >= 8 )

{ a

++b; /* update output buffer if bits
inserted more than 7

b i = 0; /* clear inserted bit count *1
goto lop;
}

}
if (( p = fgetc( infile )) == EOF ) break;

/* input another character */
p -= 46;
if ( p < 32 ) bs = 5;
else bs = 6;
}

b -= ( size - 1 ); /* buffer is full, back to start
address, right time for
output */

if (( size - 1 ) != n )/* case of EOF met somewhere in
between */

{
for ( i = 1; i < ( size - 1 ); i++

fputc( *b++, tempf2 );
break; /* output whatever have and quit*/
}

p <<= ( 8 - bs ); /* keep going, then shift last
character to right position*/

for ( i 1; i <= ( size - 1 ); i++
fputc( *b++, tempf2 );

b -= n; /* not EOF yet, output 9 bytes
and back to start address
ready for next loop */

}
fclose( tempf2 );
printf( "Recovered!...\n" );
}

70



APPENDIX B. MULTILEVEL EXPERIMENT REFERENCE TABLES

Table A. Prime Numbers Distribution.

0 1 2 3 4 5 6

9 353 283 233 179 127 73 31

8 359 293 239 181 131 79 37

7 367 307 241 191 137 83 41

6 373 311 251 193 139 89 43

5 379 313 257 197 149 97 47

4 383 317 263 199 151 101 53

3 389 331 269 211 157 103 59

2 397 337 271 223 163 107 61

1 401 347 277 227 167 109 67

0 409 349 281 229 173 113 71

e.g. S26, Prime = 251.

Table B. Service Key Numbers and Passwords.

SK PRIMES KEY NUMBERS CRYPTED PASSWORDS

00 409 0015206469 abii06nsy80

01 401 0205124689 caih24puy79

02 397 1440799106 oedn99kmv78

03 389 0698488394 gjlk88mvt77

04 383 0850186419 ifdh86nny76

05 379 0523243868 fcgi43rsx75

06 373 0150800082 bfdoOOjur74

07 367 1537810080 pdkol0jup73
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08 359 0883797530 iign97opp72

09 353 2138861890 vdlo6lrvp71

10 349 0941660305 jeem6Ommu7O

11 347 1425676110 ocim76knp69

12 337 0098817834 ajlol7rpt68

13 331 0947247270 jeki471tp67

14 317 0699935923 gjmp35sos66

15 313 1262712566 mgfnl2osv65

16 311 1600459268 qadk591sx64

17 307 0953599917 jfgl99snw63

18 293 2082398675 uifj98ptu62

19 283 0072782989 ahfn82suy6l

20 281 0112561142 bbfl6lkqr6O

21 277 1243547112 megl47knr59

22 271 0442572687 eefl72puw58

23 269 1039735727 kdmn35qow57

24 263 0907973227 jakp73low56

25 2E7 1170134111 lhdh34knq55

26 251 1545019722 peigl9qor54

27 241 1347280362 neki8Omsr53

28 239 2119781043 vbmn8ljqs52

29 233 1547062091 pekg62jvq5l

30 229 1775718672 rhinl8ptr5o

31 227 1475717646 ohinl7pqv49

32 223 0985717941 jiinl7sqq48

33 211 1760752331 rgdn52mpq47

34 199 0642865897 gefo65rvw46

35 197 1989952527 timp520ow45

36 193 0504668756 fahm68qrv44

37 191 0030306011 addjO6jnq43
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38 181 1874146998 shhh46svx42

39 179 0427977764 eckp77qst4l

40 173 0491586618 ejel86pnx4O

41 167 0866484154 igjk84krt39

42 163 0265736240 cgin361qp38

43 157 0256917344 cfjpl7mqt37

44 151 0516007035 fbjgO7jpu36

45 149 1636320334 qdjj20mpt35

46 139 0524932628 fchp32pox34

47 137 1654493248 qfhk931qx33

48 131 0374636578 dhhm36otx32

49 127 1650980892 qfdp8Orvr3l

50 113 1468654363 oglm54mss3o

51 109 0824711795 ichnllqvu29

52 107 1147133098 lekh33jvx28

53 103 0936296552 jdji96orr27

54 101 0813794276 ibgn941tv26

55 097 2066215471 ugjil5ntq25

56 089 0266019527 cgjgl9oow24

57 083 0880884223 iido84los23

58 079 1236583491 mdjl83nvq22

59 073 0842991221 iefp9lloq2l

60 071 0109676383 bamm76mus20

61 067 1407243086 oaki43juvl9

62 061 0688602219 gilmO2lnyl8

63 059 1005217527 kaiil7oowl7

64 053 0029035185 acmg35kuul6

65 047 1006677351 kajm77mrql5

66 043 1947531213 tekl3llnsl4

67 041 0487399200 eikj991mpl3
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68 037 0179179038 bhmh79jpxl2

69 031 0535866065 fdio66jsull

SK: Services Key.
KEY NUMBER: After mod() operation.
CRYPTED PASSWORDS: Encrypted from Key numbers.

Table C. Master Key Lists

SERVICE KEY LIST
MK NUMBER PASSWORD ( Each number is an index

(encrypted) correspond to each ser-
vice key in table A )

0 1865519134 sgill9kptO0 09
08 18
07 17 27
06 16 26 36
05 15 25 35 45
04 14 24 34 44 54
03 13 23 33 43 53 63
02 12 22 32 42 52 62
01 11 21 31 41 51 61
00 10 20 30 40 50 60

1 0233536330 cdg136mpp01 06 16
05 15
04 14
03 13
02 12
01 11
00 10

2 1650980892 qfdp80rvro2 49
48
47
46
45
44
43
42
41
40
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3 0002255128 aafi55koxO3 39
38

37
36

35
34
33
32
31

20 30

4 1609630558 qamm30orxo4 03 13 23 33 43 53 63
02 12 22 32 42 52 62
01 11 21 31 41 51 61
00 10 20 30 40 50 60

5 1582313220 pifjl3lopo5 09 19 29 39 49 59
08 18 28 38 48 58 68
07 17 27 37 47 57 67
06 16 26 36 46 56 66
05 15 25 35 45 55 65
04 14 24 34 44 54 64
03 13 23 33 43 53 63
02 12 22 32 42 52 62
01 11 21 31 41 51 61
00 10 20 30 40 50 60

6 0046844145 aejo44kquo6 00 10 20 30 40 50 60

7 1479772666 ohmn72psvo7 41 51
40 50
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